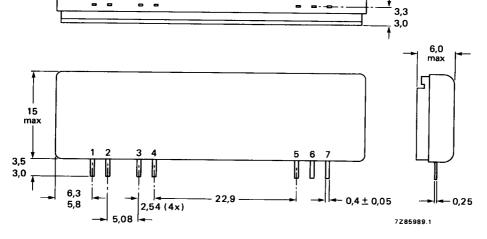
VHF POWER AMPLIFIER MODULE

VHF broadband amplifier module designed for use in mobile communication equipment operating directly from a 9.6 V electrical supply. The module will produce a minimum of 2 W into a 50 Ω load over the frequency range 132 to 156 MHz.

The module consists of a two-stage RF amplifier using n-channel FETs with lumped element matching components in a SOT-182 plastic encapsulation.

QUICK REFERENCE DATA


Mode of operation			CW
Frequency range		132 +	o 156 MHz
DC supply voltage (terminal 3)	v_{S1}	nom.	9.6 V
DC supply voltage (terminal 5)	V _{S2}	nom.	9.6 V
Drive power Load power	P_{D}	max.	35 mW
Input impedance	PL	>	2.0 W
Output load impedance	z _i	nom.	50 Ω
Output load impedance	z_{L}	nom.	50 Ω

MECHANICAL DATA

Dimensions in mm

Lead reference

- 1 = RF input
- 2 = Earth
- $3 = V_{S1}$ and second
- stage bias 4 = Earth
- 5 = V_{S2}
- 6 = Earth
- 7 = RF output

50 max

Fig. 1 SOT-182.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

DC supply terminal voltages*	V_{S1}, V_{S2}	max.	13.5	V
RF input terminal voltage*	± Vi	max.	25	V
RF output terminal voltage*	$^{\pm}$ V $_{o}$	max.	25	V
Load power (see Fig. 2)	PL	max.	4.0	W
Drive power	P_{D}	max.	70	mW
Storage temperature range	T _{stg}	-40 to	100	οС
Operating heatsink temperature	Th	max.	90	οС

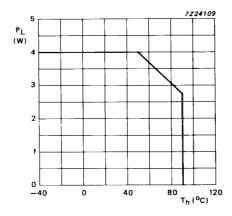


Fig. 2 Load power derating; VSWR = 1:1.

CHARACTERISTICS

T_h = 25 °C unless otherwise stated

 $\mbox{V}_{\mbox{S1}}$ = $\mbox{V}_{\mbox{S2}}$ = 9.6 V; $\mbox{R}_{\mbox{S}}$ = R $_{\mbox{L}}$ = 50 Ω ; f = 132 to 156 MHz.

Quiescent currents

Quiescent currents			
first stage current			
$P_D = 0$	¹ Ω1	typ.	70 mA
second stage current with			
first stage open circuit			
$P_D = 0; V_{S1} = 0$	IQ2	<	0.5 mA
second stage current with			
first stage supply connected	102	typ.	250 mA
	.02	-,,	
RF drive power	_		~
P _L = 2.0 W	P_{D}	<	35 mW

^{*} With respect to flange.

CHARACTERISTICS (continued)

Efficiency P _L = 2.0 W	η	> 40 % typ. 42 %
Harmonic output	d ₂ , d ₃	max35 dB
Input VSWR with respect to 50 Ω	VSWR	< 2.0:1

Stability

The module is stable with a load VSWR up to 8 (all phases) when operated within the following conditions:

$$V_{S1} \le V_{S2} = 4.0 \text{ V}$$
 to 11.2 V; $P_D = 17$ to 70 mW; $f = 132$ to 156 MHz; $P_L = < 4 \text{ W}$ (matched).

Ruggedness

The module will withstand a load mismatch VSWR of 50 (all phases) for short period overload conditions, with P_D , V_{S1} and V_{S2} at maximum values, providing the combination does not cause the matched RF output power rating to be exceeded ($T_h < 90\,^{\circ}C$).

Mounting

To ensure good thermal transfer the module should be mounted onto a heatsink with a flat surface and heat-conducting compound applied between module and heatsink. The module is designed to be pressed against the heatsink by a sheet spring applying up to 50 N to the top surface of the module encapsulation. The leads of the devices may be soldered directly into a circuit using a soldering iron with a maximum temperature of 245 °C for not more than 10 s at a distance of at least 1 mm from the plastic.

Power rating

In general, it is recommended that the output power from the module under nominal conditions should not exceed 3 W in order to provide an adequate safety margin under fault conditions.

Gain control

Power output can be controlled by variation of the driver stage supply voltage V_{S1} . The supply required is a voltage regulator with a current rating of 0.15 A and an output voltage range of 4 V to 9.6 V. V_{S1} must not exceed V_{S2} .

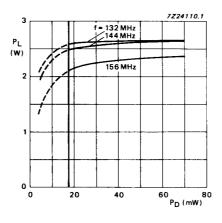


Fig. 3 Load power as a function of drive power; $V_{S1} = V_{S2} = 9.6 \text{ V}$; typical values.

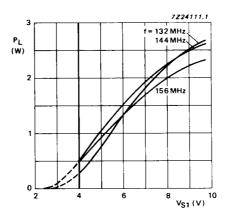


Fig. 4 Load power as a function of supply voltage V_{S1} ; P_D = 35 mW; V_{S2} = 9.6 V; typical values.

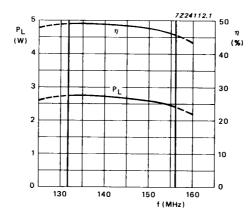


Fig. 5 Load power and efficiency as functions of frequency; $V_{S1} = V_{S2} = 9.6 \text{ V}$; $P_D = 35 \text{ mW}$; typical values.

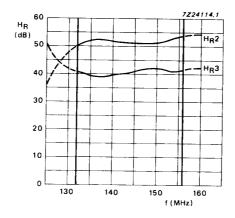


Fig. 6 Second and third harmonic rejection as a function of frequency; $V_{S1} = V_{S2} = 9.6 \text{ V}$; $P_D = 35 \text{ mW}$; $P_L = 2.0 \text{ W}$; typical values.

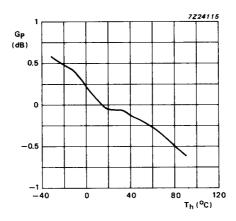


Fig. 7 Power gain as a function of temperature; $V_{S1} = V_{S2} = 9.6 \text{ V}; P_D = 35 \text{ mW}; f = 144 \text{ MHz}.$